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Oscillator Wigner functions 

G S Pogosyant, Ya A Smorodinsky and V M Ter-Antonyanf 
Joint Institute for Nuclear Research, Dubna, USSR 

Received 18 March 1980, in final form 17 September 1980 

Abstract. A closed expression is obtained for the n-dimensional Wigner oscillator function 
and a diagrammatic technique is developed for finding the explicit dependence of the 
function on Euler angles at any dimension n.  

1. Introduction 

By oscillator Wigner functions (OWF) we will understand the matrix elements of the 
operator of finite rotations over Cartesian wavefunctions of the isotropic oscillator. 

Such objects are interesting in that they determine the transformation law of the 
Cartesian wavefunctions of the isotropoic oscillator in a rotating coordinate system. 
Further, we shall deal just with this aspect of OWF, although they may turn out to be 
useful in particular problems. Thus, in studying the vibrational transitions in multi- 
atomic molecules, in some cases the OWF coincide with the overlap integrals defining the 
intensity of vibrational bands (Doktorov et a1 1976). 

The paper is organised as follows. First the two-dimensional OWF are introduced. 
Then, OWF of arbitrary dimensionality are constructed in this basis and a diagrammatic 
technique is developed, which allows us to define the explicit dependence of these 
functions on Euler angles. 

2. Two dimensions 

For the transition from one coordinate system S(x,  y )  to another S(x ’ ,  y’) rotated by an 
angle a, the Cartesian wavefunctions of a circular oscillator are transformed by the 
orthogonal matrix$ 

i 

(1) 

Let us expand coefficients of this transformation over the polar wavefunctions with the 
same energy. Since ECar = 2 j  + 1, Epol = 2 p  + /MI + 1, where p is a non-negative 
integer, and M the azimuthal quantum number, then p = j - /M1/2 at equal energies, so 

t Permanent address: Yerevan State University, Yerevan, USSR. 
j: We choose the system of units: h = m = w = 1; angles cp and cp’ in systems S and S‘ are related by cp’ = cp +a. 
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that -2j  s M s 2 j  and hence 

( j + m ,  j - m ; x ,  y l j+m’ , j -m’ ;  x’, Y’ )  
i 

= ( j  f m, j -  m ;  x, y1 j - l k l ,  2 k ;  r, cp) e2jka 
k = - j  

x ( j - l k l ,  2k ;  r, cp’l  j + m ’ ,  j -m‘ ;  x’, y ‘ )  

In this formula the coefficients of transition from Cartesian to polar wavefunctions have 
been calculated by Pogosyan and Ter-Antonyan (1979) and are as follows: 

( j + m, j - m ; x, y I j - I k I, 2 k ; r, cp) = (-i)i-m (- l)j-’k’dk,m ( 7 ~ / 2 ) ,  

the Wigner d-functions with their phases being defined according to Edmonds (1957). 
Using this result and the addition theorem for d-functions, we obtain the trans- 
formation law 

i 

I j+m’ , j -m’ ;x‘ ,  y’)= m = - j  di,,,,(2a)lj+1li,j-m;x, y ) .  ( 2 )  

It is easy to verify that at m‘ = - j  and a = 7r/4 we arrive at the known addition theorem 
for Hermite polynomials. For a = ~ / 4  formula (2) has been derived in Pogosyan and 
Ter-Antonyan (1979). Note also that formula (2) results in the integral representation 
of d-functions via the normalised Hermite function 

cp x -x sin -+ y cos - (  2 

The explicit form of transformation (2) can be established without passing to the polar 
wavefunctions, but by considering relation (1) at large x and y and substituting the 
Hermite polynomials by the corresponding highest powers of arguments. 

3. Three and four dimensions 

The Wigner oscillator functions for n a 3 can be calculated, as above, passing first to the 
spherical basis and then making a two-dimensional rotation. However, even at n = 3 
the transition coefficients are rather cumbersome (Pogosyan and Ter-Antonyan 1978) 
and can no longer be summed by the known addition theorems for d-functions and 
Clebsch-Gordon coefficients. Therefore, we perform here all calculations directly in 
terms of Cartesian wavefunctions. 

The form of an n-dimensional finite-rotation operator is naturally defined by the 
number of angles used for transition from one point on the sphere to another. In the 
Cartesian basis the most simple rotations are in separate coordinate planes, as each of 
such rotations transforms a pair of one-dimensional oscillator functions by the law (2). 

An arbitrary n-dimensional rotation is known to be equivalent to a sequence of such 
‘elementary’ rotations at n(n - 1)/2 Euler angles, chosen in a definite manner. 
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In the three-dimensional case the finite rotation operator is expressed in terms of the 
Euler angles e:, &, 0:: 

& ( 3 )  = ~21(e:)&,2(e~)&2,(e:).  (3)  

Indices of the operators &j+l,j label the coordinate plane in which a rotation occurs, and 
the rotation is taken to be positive from the ( j +  1) axis to the j axis. Since the 
wavefunctions in the systems S(x,  y, z )  and S' (x ' ,  y f ,  2 ' )  are related to the same energy, 
the non-zero matrix elements are ( j  + m, j - m, n - 2jl&(3!/j'+ m',  j '  - m', n - 2jf) .  
Expressing by (3)  the operator &(3) in terms of operators Gj+l,j and separating the 
rotation in the plane ( x ,  y )  by the angle e:, we obtain 

( j + m ,  j -m ,n -2 j lG(3 ) l j '+mf ,  j l-m',  n -2 j ' )  
n / Z  j "  

j"=0 m"=- j "  
= 1 1 ( j + m ,  j-m,n-2jl&zl(e:)&,2(e~)lj f '+mf' ,  j " -mf ' , n -2 j r f )  

x(j"+mll, jl'-m'f, n - 2 j " l ~ 2 ~ ( e ~ ) l j ' + m ' ,  j ' - m f ,  n -2 j f ) .  

The rotation &21(6;) does not affect the coordinate z ;  therefore the latter matrix 
element differs from zero only at j "  = j '  and thus there is no longer summation over j " .  
The coefficient containing the product of two rotation operators is simplified to a linear 
combination of products of matrix elements of the operators &21(O?) and &3z(O:), and 
with analogous selection rules we have 

( j + m ,  j -m ,n -2 j /&(3) l j1+m' ,  j ' - m ' , n - 2 j f )  
i' 1 

= m"=-j' 1 m=-, -1 , ( j + m , i - m I 8 2 1 ( e : ) l i + f i , j - f i )  

x ( j - - f i ,  n -2j".32(e:)lj'-m'', n-23'') 

x ( j '+m' ' ,  j ' - m ' f l & z l ( ~ ~ ) l j ' +  m',  j'-m')a,+fi,i,+m,8. 

Then, changing summation over m" and f i  to summation over t = j ' +  m" and 
k = j + f i  and using the relation (resulting from (2)) 

( j +  m, j -  m ;  xk, xk+ll j ' +  m', j ' -  m ' ;  x i ,  x i + l )  

= ( j+m,  j-ml&k+l,k(a)l j ' +  m', j l -m ' )  = d',,,,(2a), (4) 

we arrive at the explicit expression for the three-dimensional oscillator Wigner function 

( j + m ,  j-m,n-2j1&(3)lj '+mf,  j ' -m ' ,n -2 j1 )  

The limits of summation over t may be not written explicitly if t is assumed to run 
only over those values at which the absolute value of lower t-independent indices of 
d-functions does not exceed that of upper indices. 

As is clear from (3) ,  at 0: = 0 there is a pure rotation in the plane ( x ,  y )  by an angle 
0: + e:, and at 0: = 0: = 0 the same rotation in the plane ( 2 ,  y )  by an angle e:, so in these 
cases expression (4) should turn into the d-function with arguments 2(0: + 0:) and 2e:, 
respectively. The validity of this transition is easily verified with the use of dL,mf (0) = 

and the addition theorem. 
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The four-dimensional rotation is given by six Euler angles and the operator e ( 4 )  is 
expressed through the operators of rotation in coordinate planes by the formula 
(Vilenkin 1968) 

e ( 4 )  = ~ 2 1 c e : ~ ~ 3 2 c e ~ ~ ~ , 3 c e ~ ~ ~ 2 1 ( e ~ ~ ~ ~ 2 ( e ~ ~ ~ 2 1 ( ~ ~ ~ .  (6) 

The Wigner oscillator function is calculated analogously: 

( j  + m, j - m, k - 2j, n - k le (4 ) I  j ' +  m',  j ' -  m', k ' -  2j ' ,  n - k') 

(7) = 1 d~~,u- j ' (28 i )d~- , ,~- , (28i )d2j , - (k~+uj ,2 ,~ j - (k ,+u) /2(2e2)  1 2 ( k ' - u j / Z  2 

&PA 

( k - A ) / 2  3 4 2 - w  x d X - j , m ( 2 e : ) d 2 c r - ( k + ~ j / 2 , 2 j - ( k + ~ j / 2  (2e2)dk'-w-n/2,k-cr-n/2 (26:). 

3 3  As for the limits of t-summation, see the comment after formula ( 5 ) .  At 0: = O2 = e3 = 0 
the rotation (6) becomes three-dimensional and formula (7)  reduces to ( 5 ) .  

4. n dimensions 

Consider now the n-dimensional case. The operator of finite n-dimensional rotations e(,) can be represented by the following product of rotation operators in the 
coordinate planes (Vilenkin 1968): 

From formula (8) it follows that the n-dimensional oscillator Wigner function can be 
expressed in terms of the matrix elements of operators (9) as follows: 

( N ~ ,  . . . , N , \ & ( ~ ) [ N ; , .  . . , N ; ,  . . . , N ; )  

= 1 . .  . (NI , .  . . , N n 1 6 ( n - 1 ) l p ~ - 1 '  . . . p : y ,  N ; )  (10) 
p y l ) , , . p ; ; w ; ;  ' p ( 2 )  ( 2 )  

1 p 2  

x (&-I ) ,  . . . , p n - l  ( n - 1 )  I G ( f l - 2 ) l p ( f l - 2 )  1 , . . * , p ? - 3 V ; - l ) .  * * 

x ( p i 2 ' ,  p ~ 2 ) l e ( 1 ' l N ~ ,  N ; )  

with p';" +. , . + p i i )  = N i  +. . . + N : .  
In the notation 

expression (10) can be rewritten in a more compact form: 

With the help of (9), we single out the rightmost factor of the product of the operators of 
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rotation in coordinate planes and make use of the expression (resulting'from ( 2 ) )  

where summation over m is in the limits 21ml S p y )  + Nj+1. Carrying the state vector 
( p p z : ) /  out of the product of the first ( j - 1 )  operators of rotation in the coordinate 
planes, and using the condition of orthonormalisation of one-dimensional oscillator 
wavefunctions, we arrive at the relation 

i 

1=1 
(pY+' ' ,  , . . , pj'+"')[ n Gi+i,r(Oi)lpY), . . - , p y ) ,  N:+i)  

= ( p y )  - p y z l ) ,  p J " " I ~ j + l , j ( B j ) l p j " ,  NI+1 ) 
j-1 

(py+ l )  , , , . , pjj+')l n 6r+i,/(O{)IpY), . . . , p??i, pi')  +Ni+1 -p;T:)).  
r=i 

Further decreasing the number of multipliers in the product of rotation operators, after 
( j  - 1) steps we find 

u = l  V'l 

Now with formula (4) we arrive at the final result 

As can be verified, formula (13) at n = 2,3 and 4 reduces to (4), ( 5 )  and (7),  respectively. 

5. Graphs 

The results obtained can be made much more transparent through the following 
analogy. The operator e(,) relates states /NI,  . . . , N,, ; XI, . . . , X , )  and IN;, . . . , NL ; 
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X1,. . . , X n ) ;  therefore, the matrix element ( N 1 , .  . . , N n l d ( n ) l N \ ,  . . . , N k )  can be 
interpreted as the 'amplitude of transition of a system' from state N '  to state N, and this 
amplitude can be associated with the diagram 

In such an interpretation the expression (10) of the matrix element of the operator e(,) 
over the matrix elements of the operators e'') is graphically represented by a sequence 
of 'transitions' 

Summation is implied over broken lines; intermediate blocks with one full line 
correspond to the matrix elements of operators e"': 
( p f + l ) ,  . . . , pjL?)l&(j)(ei, . . . , ej) lpi" ,  . . . , p y ) ,  NI+i ) 

According to the condition preceding formula ( l l ) ,  at j = 1 and j = n these blocks 
become, respectively, the first and the last blocks of expansion (14). Each block obeys 
the conservation law 

pj'+l'  +. . .+p?i+t) =p'1 +. . . + p j + N ; + l .  

The graphical expansion (14) and expression (12) allow the transition amplitude 
(N16(n)lNr) to be represented by the amplitudes of elementary transitions of two lines 
into two lines (see figure 1). 

In this diagram the number of intersections (elementary blocks) equals n ( n  - 1)/2; 
this means that rotation in the coordinate plane by a certain Euler angle is associated 
with each of such blocks. The number of summations in formula (13) equals ( n  - 1) 
(n  - 2)/2 and coincides with the number of elementary loops in the diagram of figure 2. 
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Figure 1. Diagram representing the n-dimensional oscillator Wigner function by d- 
functions dependent on angles of rotations in the coordinate planes. 

n-2j' n - 2 j  

, j - m  

i + m  / '+ I l l '  -1- --- 
Figure 2. Diagram for the three-dimensional oscillator Wigner function. 

According to formula (4), to each intersection there corresponds the amplitude of the 
elementary 'transition' 

B' B 
a f 

'. / 

\ 

/ \ 
I Y 

\ 

A' A 

The operator &(e )  in (16) should be supplied 
defining the plane in which the rotation occurs. 

with indices of the coordinate axes 
We have omitted these indices since 

they are unambiguously defined by the very diagram of figure 1. 
The procedure of calculation is as follows. For each n we draw the corresponding 

diagram, mark the Euler angles, and place the indices for all lines. The number of 
non-fixed indices should be equal to the number of elementary loops of the diagram. 
Further, with each intersection we associate the d-function of the angle 'attached' to this 
intersection. Indices of the d-function obey the rule (16) and the summation is carried 
out over non-fixed indices, over those values for which the d-function is meaningful. 
The latter condition has been discussed earlier in connection with formula ( 5 ) .  

Let us exemplify this procedure for n = 3 , 4 .  Choosing the indices of wavefunctions 
as in § 3, we arrive at the diagrams drawn in figures 2 and 3. 

The formulated rules for those diagrams give rise to the formulae (5) and ( 7 ) .  
Thus the diagrammatic method reduces the problem of calculating the Wigner 

oscillator function to simple geometrical constructions. 
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J I- 

j '+ m 'J * m  

Figure 3. Diagram for the four-dimensional oscillator Wigner function. 
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